![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
12.2 课后习题详解
§1 富里埃级数
1.证明:
(1)1,cosx,cos2x,…,cosnx,…
(2)sinx,sin2x,sin3x,…,sinnx,…
是[0,π]上的正交系;但1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…不是[0,π]上的正交系.
证明:(1)因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2265.jpg?sign=1739429826-8T5BJ1g2IpMxJO1cjjjGRmfpWBOT4cAe-0-53810b7047a574b7d48e5f1aed01c29c)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2266.jpg?sign=1739429826-3YSSD6D68UTDzA946Gy1WhJquVM3HIMc-0-666493bccde4d9ac434567039c8e57fb)
则1,cosx,cos2x,…,cosnx,…是[0,π]上的正交系
(2)因
则sinx,sin2x,sin3x,…,sinnx,…是[0,π]上的正交系
又则1,cosx,cos2x,sin2x,…cosnx,sinnx,…不是[0,π]上的正交系.
2.证明:sinx,sin3x,…sin(2n+1)x,…是上的正交系,写出它的标准正交系
(即不仅正交,而且每个函数的平方在上的积分为1),并导出
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2271.jpg?sign=1739429826-QtOgDRBZsb5JsVfu9FA5cri5PHI4zXRO-0-0ee1b1b8e761563d4086f10c493781bd)
是[0,1]上的正交系.
证明:因
则sinx,sin3x,…sin(2n+1)x,…是上的正交系
又由得
则在上它的标准正交系为
又
则是[0,l]上的正交系.
3.设f(t)是周期为2π的方波,它在[﹣π,π]上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2280.jpg?sign=1739429826-sQLY7eeU4qE543v8C6FliW3SEWnbtfHf-0-29d3334e2de06ff0f9d901519a84328c)
将这个方波展开成傅里叶级数.
解:因又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2282.jpg?sign=1739429826-Icm2ksjTWCeI4GNn1QkIFbSedFsx80CR-0-e42f812da57817cf0a8708c9b0b3b36a)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2283.jpg?sign=1739429826-EGcPlGZyEPBQmiz9LaeP0ABxWCQwPFJ7-0-6c9ce872f0b22a7620d3254879033426)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2284.jpg?sign=1739429826-kxVU3RBOKqk1k3nXhZJ3eoecKq4qj7jh-0-b661233986514a42e546c5c1683a42b2)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2285.jpg?sign=1739429826-XAeXeEJXwao1t5lQcKKvp4BWYWdE2WEy-0-c8732c9b116b68801a3ead0b59851cf7)
4.设f(t)是周期为T的半波整流波,它在上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2287.jpg?sign=1739429826-G2ZsvNUSnO184BhCyNrUNVXPLuzqVBl4-0-8c4928e0baf77d59d8020f495d917c65)
将这半波整流波展开成傅里叶级数.
解:因
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2290.jpg?sign=1739429826-5AWmxVWfQhYnCKnDQNjAyyPti63fmd3v-0-523b4eb01706fb598d066dee292e2a17)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2291.jpg?sign=1739429826-5GeaEjLyC797vVAru2WSUsF5cF8siWVZ-0-f13489529194a4fed04d2bea6b37ab86)
5.设f(t)以2π为周期,在[-π,π]内
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2292.jpg?sign=1739429826-QNCpsV9aaCdlfXC5JrFixT9bRPwFvmFI-0-a36a592ff1547e3cc251f595dcbe8bd9)
把f(t)展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2294.jpg?sign=1739429826-CIJQoVGt0X9KwWWkphla3Be4IwLrBDoC-0-8793f1e25ae54124fa2859458b512a09)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2295.jpg?sign=1739429826-YEHO51IEP2OjxDLSX1ooSfCnmEKTbKzD-0-65bd6ff98df37fe3dda021b002a1451b)
6.设f(t)是周期为2π、高为h的锯齿形波,它在[0,2π]上的函数表示式为,将这个锯齿形波展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2298.jpg?sign=1739429826-MBpNROx7EtVeVBTeb71zYLSG91AngYlT-0-b3fd1169da924e7950b1e433b6c6dd16)
则
7.将宽度为τ、高为h、周期为T的矩形波展开成余弦级数.
解:在一个周期内矩形波函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2301.jpg?sign=1739429826-IG7DEFAzQSbPvBJbxCaLil8nzFznzgwg-0-6d0b015b260f29a224127de708a5e402)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2303.jpg?sign=1739429826-o3OwhvLaV2R9iQUhSdhB893m8sGMFMad-0-ec98a654e3026f775e13109c4f4f6bd2)
8.写出如图12-1所示的周期为T的三角波在内的函数表达式,并将它展开成正弦级数.
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2305.jpg?sign=1739429826-vOfSfTWD9WCuxmRsAnV6QJLxIOqjf0rJ-0-19a77b6d3272b46b9e820b3726189d3c)
图12-1
解:如图所示的周期为T的三角波在的函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2307.jpg?sign=1739429826-T3CTPlH477jCvvkOXsIniQt7waGrG70b-0-adbf148c7ab7368d2769839bd3dd097b)
先把f(t)延拓成上的函数,再据题意,还必须把它延拓成奇函数,于是a0=ak=0
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2309.jpg?sign=1739429826-UErE56GZdeFBMElZ7YxkTahUFhLNwf82-0-50e9df9a2d9db2a2d953b522eec91313)
则
9.将f(x)=sgn(cosx)展开成傅里叶级数.
解:因f(x+2π)=sgn[cos(x+2π)]=sgn(cosx)=f(x),则f(x)是以2π为周期的周期函数
又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2312.jpg?sign=1739429826-1vViZSk5NBJEfyc8ael0P9cbKWFzWCaO-0-12cf0d700daab20f8bfa32c7dca38fbf)
则f(x)在(-∞,+∞)上可展为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2313.jpg?sign=1739429826-sbLWMtQke5CzPGIzsxUKr9apc6fweHMq-0-9927f14c711280cd86aec0cb4c854335)
10.应当如何把区间内的可积函数f(x)延拓后,使它展开成的傅里叶级数的性状如下:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2315.jpg?sign=1739429826-xms7wEyixc7TBUHtg7QbH3jhkE2D0BZu-0-67d10fd8877dc901a551944d76442e11)
解:因展开式中无正弦项,则f(x)延拓后应为偶函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数a2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2317.jpg?sign=1739429826-rydsOLHF7XxajLhU19CGkRAvaww4QM30-0-1612a78a8724f08c10e3313499237fa0)
则
在左端前一积分中作变量代换,令x=π-t则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2319.jpg?sign=1739429826-kRiRBKJOVqbEAb4idxaW78qFqnuApUf8-0-5b8804521dcd8cbf222791bc28ed26a3)
要使上式成立,则必须当时.有f(π-x)+φ(x)=0即φ(x)=-f(π-x)
于是就求出了延拓后的函数在内的表达式为-f(π-x)
又延拓后的函数为偶函数,则它在的表达式为f(-x),在
的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2324.jpg?sign=1739429826-lSbeQyXGuTuI52VOlNdI388InEZ6kzH2-0-620b673bac7de4b2bdf6c2f65fe16e66)
11.同上一题,但展开的傅里叶级数形状为:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2325.jpg?sign=1739429826-LoXCG9IVANvau3iEz9w41085P3RWgT6P-0-7dbfde102a9107fb8a5d7b84894a7ff7)
解:因展开式中无余弦项,则f(x)延拓后应为奇函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数b2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2327.jpg?sign=1739429826-X5UfO7fqnPyb6PY4KpQnrGvHr99ZIt5O-0-18d94d1584e0a5b6f5a5a8c2bfc20fc8)
则
在左端前一积分中作变量代换,令x=π-t
则
要使上式成立,则必须当时.有-f(π-x)+φ(x)=0即φ(x)=f(π-x)
于是就求出了延拓后的函数在内的表达式为f(π-x)
又延拓后的函数为奇函数,则它在的表达式为-f(-x),在
上的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2334.jpg?sign=1739429826-KikqZtSJ6vsEf8YTCBUnC1ufGA2hSyx9-0-567aff69043c4dacc68ffb816856d0ca)
12.设f(x)可积、绝对可积,证明:
(1)如果函数f(x)在[-π,π]上满足f(x+π)=f(x),那么a2m-1=b2m-1=0
(2)如果函数f(x)在[-π,π]上满足f(x+π)= -f(x),那么a2m=b2m=0
证明:(1)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)=f(x)
则f(x)在[-π,π]上可积、绝对可积且以π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2336.jpg?sign=1739429826-rmI4LBjX0XNjNU3afGrXtyfkHIKck1k1-0-e0b9f03c684320a03e2a9f597c16f77d)
于是
从而,得a2m-1=0(m=1,2,…)
同理,得b2m-1=0(m=1,2,…)
(2)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)= -f(x),则f(x+2π)=f(x)
于是f(x)在[-π,π]上可积、绝对可积且以2π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2339.jpg?sign=1739429826-liqGfaLuZSLD81bkVbNU309WxScx9w6W-0-4f8af91896daf863c6cfd37689a31237)
于是
从而,得a2m=0(m=1,2,…)
同理,得b2m=0(m=1,2,…)
13.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2343.jpg?sign=1739429826-H79yPqWQtlLLCmj8rk4mOWJmPKukwwgJ-0-95073b85213b8073f6e021de2e45703f)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2346.jpg?sign=1739429826-nJLSE7EHcwO60ZkW0gCXx9kuuNpP7IaY-0-944327103856947af02681adf3918231)
同理,得bn=-βn(n=1,2,…)
14.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶系数分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2350.jpg?sign=1739429826-Rzg19bne88YXA8rv8NpWngkOakQ8k5xO-0-9e1f7b98998f4d90de2631313b3f24eb)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2351.jpg?sign=1739429826-tXUK9defT75U82tvAla1RSQFypZPPhBI-0-30512e97df66d05dc5c3da79b93f443b)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2354.jpg?sign=1739429826-xTRCtNM8pxsuvqz1B3s5V1NiZHivNPAE-0-6f5eaaa9bd6147251a4f159e60553628)
同理,得bn=βn(n=1,2,…)
15.设f(t)在(-π,π)上分段连续,当t=0连续且有单侧导数,证明当p→∞时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2355.jpg?sign=1739429826-gg8moByECTcOJkc206631MEa1I2rYjXD-0-8e0d70cf1cdce169aa5a6d24acc8027a)
证明:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2356.jpg?sign=1739429826-BSqUe4vLbGFeHKjdcHt4ylLSysp8DSVJ-0-7f9fdcf9e4605ecf3147f5eebd8e682e)
在右端前一积分中令t=-x,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2357.jpg?sign=1739429826-JTzaru97BUEfj5jmVULNyQ8vrEcRhDz0-0-3ff71fe9e88cc5ad6af2059e77f18bfc)
代回原式,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2358.jpg?sign=1739429826-x0prSLl50u1oTOwuF6DDBkFvsqfLX0CF-0-b01304d6103711d9656a733ec76fa74b)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2359.jpg?sign=1739429826-Nk26EoQ53q0WgEAOIGZqjCwfs9bh0IOG-0-806bd87bf1ee0a3e17ff6e499e84a2d3)
下证
因
对于
因f(t)在(-π,π)上分段连续,在(δ,π)上连续,则
在(δ,π)上分段连续因而可积,则由黎曼引理,得
对于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2367.jpg?sign=1739429826-hg0LaVNsXEHn32oO353H5aacqje0zGy8-0-280937926e4de7bd0220d35351ad67f6)
因补充定义,t=0时,函数
的值为0,则
是[0,δ]上的连续函数
又f(t)为(-π,π)上的分段连续函数,则在[0,δ]上分段连续,因而可积,则由黎曼引理,得
因f'(+0),f''(-0)存在,则存在
补充定义,t=0时,函数值为f'(+0)+f'(-0),则
是[0,δ]上的分段函数,因而可积,于是由黎曼引理,得
综上可得,当p→∞时,
§2 傅里叶变换
1.设f(x)在(-∞,+∞)内绝对可积,证明在(-∞,+∞)内连续.
证明:对总有A',A'',使得ω∈[A',A'']
由于
后者收敛且不含参量ω,这表明积分在[A',A'']上一致收敛,据一致收敛积分的连续性,得
在[A',A'']上连续,从而在点ω处连续,由ω的任意性,得
在(-∞,+∞)内连续.
2.设f(x)在(-∞,+∞)内绝对可积,证明
证明:由f(x)在(-∞,+∞)内绝对可积,得对于任给的ε>0,存在A>0,使有
设f(x)在[0,A]内无暇点,则在[0,A]中插入分点0=t0<t1<…<tm=A,并设f(x)在[tk-1,tk]上的下确界为mk,于是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2387.jpg?sign=1739429826-meA02kaHbFq6jZli5dMa8ZOv5cNGrRLG-0-e9bcec3b547fe0eb6a72b634ee51b64f)
从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2388.jpg?sign=1739429826-hBz25NVA4lRLTsKP4ebSmKLDOYZsCV4z-0-b33737ac2772131e29d1804195665d08)
其中ωk为f(x)在区间[tk-1,tk]上的振幅,△tk=tk-tk-1
由于f(x)在[0,A]上可积,故可取某一方法,使有
对于这样固定的方法,为一定值,因而存在δ>0,使当ω>δ时,恒有
于是对上述所选取的δ,当ω>δ时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2392.jpg?sign=1739429826-ApUpbxC5qEwk9ChH1iZu6w5uJlKIwXiN-0-f0507383b67ee23e0c1f7552be0af09e)
其次,设f(x)在区间[0,A]中有瑕点,为简便起见,不妨设只有一个瑕点且为0,于是对任给的ε>0,存在η>0,使有
又f(x)在[η,A]上无瑕点,故应用上述结果可得存在δ,使当ω>δ时,恒有于是当ω>δ时,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2395.jpg?sign=1739429826-8NUMbQHW1ClxFp8Lpztdgpa7TD85ZnbI-0-affb87d849a367df4c4d570e787b9fdc)
即
同法,得当f(x)在(-∞,+∞)内绝对可积时,均有
同法可证得当f(x)在(-∞,+∞)内绝对可积时,
于是
3.求下列函数的傅里叶变换:
(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2400.jpg?sign=1739429826-hid0xudsG1Mcj3mNkWqjH3Lkb71rZw1W-0-ac609902591e712607f18b1a766b85a2)
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2401.jpg?sign=1739429826-7AxZLXAOVBh3KeWg5OAcmvoofNLYIccd-0-2f5a0a44fd20205a99aad9f64556da33)
解:(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2402.jpg?sign=1739429826-qMXJy1L3r0BNhRyq3yPwCWd9l6SKAeG6-0-257449119b104fdb145ca32b052377d3)
因为(-∞,+∞)内的连续函数,则
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2405.jpg?sign=1739429826-ZBlz4Kce0vkheXRf2sDU8vgi85a9lHdE-0-de3959e85671f95b844a3905dcf2b24a)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2406.jpg?sign=1739429826-3RIhZO891X0HVkGGSe3NOCaVnHXSTKIe-0-b47b4ecaefa1f458855a89519b25bbb9)
因为(-∞,+∞)内的连续函数,则