![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739615636-aptYjyTbjopLI8RdEZwTZtfZ1EYYZTRA-0-ea33211fe2c436382492d9f6d286457c)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739615636-YrJ8IbqSrXeMBzgS0O37gUTPQVixtIyJ-0-613b3115f877940b3f491fcc8acd2ab2)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739615636-Qu3ykxEmXzvdzjr9LFHdx1QjQmrI2Pgl-0-bf831d4065f07ca3f2fb7c4330f507d3)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739615636-rO6nvMw2r6ybJavP9BIPvDffqLpEheH9-0-d2d4a8bbed8eafa5a6e2e370e9312103)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739615636-M3BaiOpujIQ51YMSa184vxULaFywsaTE-0-1edccdd236bf08643874b2e3c61ed02b)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739615636-FTXJYxAdKiv0tJt8HIIxquPFddVp9Hdr-0-524a8449404a1613c7e99cc900bae5bf)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739615636-5FBG02Vs2j5AdM1nCHTw1Lk4nfeHRn5t-0-f8978c263375e629c7b2e462fce2e61a)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739615636-AXP6dcKAUtP0LPXSfHANaHWiYGHzrvoH-0-09e900a125c6a4d0f53429b1824fd282)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739615636-eEJp6FSRB3LsFbkrf1GE30mchN6pAZmj-0-a909947dc91a0e1ece0406057970f025)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739615636-5P0D9cbu9ooMRvZtckUpF71RARzQvNTt-0-41c64459c7a550ec45dc8d7493dcb978)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739615636-6RblKNet9n6Ar09Cpmt7ovsyYpCS5kZx-0-6f11648f4714bd4679093ce901973c43)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739615636-F3Jpp0RuJVsXzZB81oigVFXUXJB3wU1o-0-f0c70241ba934a195990e43265cd4c96)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739615636-poQgkrRFPPTOyhGEHZhVZ4TZKqRntiq2-0-4127530fb983003b4dac2daf508de7a2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739615636-VpLFUhxlK85oXEuefsHrI66UKSCmtf0l-0-5d6e8779f520492584740101b53dc458)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739615636-iV7vlvCHerl2X2CPGIStMmBYwBMhksLA-0-b4381d0c96e776973cf60c292bb488e7)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739615636-N70FXQo4T7vGqVC0tBROLEnLgOrQFaYh-0-1b51da6ee5bc18c5d6a2222c6007ab69)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739615636-53wRnZyAprubNUksjBfBgOjkc2xoRtfH-0-0fecb6549deddf9621521a6b2f09e337)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739615636-JSmGv4xTbfrYxXvShpKcV3eWVIVlXCjS-0-228fae52ebbf44e4a6400072d6425015)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739615636-GvDzp9tzDKGdmYnQEBSwU8jgCP5ogFD2-0-e180f5684809d4dad5ab5c2a3a5003c4)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739615636-PVsWRBcJXAidfa1mRxk6Tbp3yHAoCKJA-0-7053752b06b5c2bac961de7a835e1097)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739615636-S3QdwO2wlEZsExzm3IF0FWMQGd6gyC0k-0-bd3ee0b35dc7807ba0b78c5c0be19752)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739615636-rhiuFretv4zacZOMt3jYNsvVrBi70E08-0-077fc388fb116b675553cf2fbfb3aea5)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739615636-rSeAKirzkotuDSpBTIH2kOD8s6tPoMe9-0-083629ac8fa558559d88f58d502063dc)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739615636-6NRUdFqhtaGVIKixbgyAxFG0HXLVykVr-0-49036e2692749ee4c3d5d933ca7fe4bb)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739615636-b1uMH5hqJnz2h5fT6Aq6wtjAslq9EVrZ-0-7b527c9564582909fb67d788d84a4466)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739615636-9OKC70U54J2iQphZnOcWwNiCArTtir1o-0-13839495924d06dce12ecfe9570c5e02)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739615636-kZRa71mYPh5jAoDKWORDqN5aHGfI5jm7-0-b171cce3dcbb9618879b7f5a10eef04f)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739615636-M4zSncNSt8hoFnJsWqkBGqejaY3OzhwL-0-248f3aba8c813041968d704be870175c)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739615636-07ihetU2lw7VcdSPsnIREqORYVoweO0f-0-3cd1a78cca4034e15a3be92328756850)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739615636-Uax64ie4dI9GrcblqIEWGPGFrVXaDUjR-0-a0d0bc70fb59cc0bb0ec7603690834f0)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739615636-0Eh5clzX9Rpryi6jCaXrCLERQTMYHILm-0-91349f5608172df9540e2e95d70fc2b1)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739615636-KCQi19kocItRq0PLcFQi5gOCcnOUiWiU-0-e8109fed358dc492b23b3fd33559206a)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739615636-7TNGKUivZzskdG83vpL0sDIDc6ZVU6wR-0-df5ea55b0ca5a1c65e761ecfe236bb6f)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739615636-sF56Husqf8eUAmXL7RwAtWZKDVJNzCWN-0-97e710eaf8505b7a79c890ea1afded5a)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739615636-qDqgCKiSD5ADUYTfWbNkQoS79KcTTgKU-0-75b912175f56449bbd086c5192546183)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)