![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1739138648-y7wV7AFyxbDCMhYIhFOOWhkbxMeI3GXv-0-2d49d9437fd1c141473c938e64c25b1f)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1739138648-6qUUVQjaXeg8i50eWXrDiOzZzCnrpGjd-0-c1d48f65d9b9b10cf2567f2beb03f1fe)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1739138648-Yt9CcwUjoNbfMmlsGIhy1aWTJpszhEF9-0-d37d1ee838ddd8f27964d0d67ead75f9)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1739138648-uH7xDfZ2z2Az1JnxDXofOhReykDEqkrl-0-00514b5f6efc81904040d844d06e011b)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1739138648-OikQEQnkUrlVHITPTO67RQwrWezUlX2W-0-8fb31c32733b004b3d077362e8181418)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1739138648-hqprw9TUoxQ9wFjB4VaQGnxPEEdxx1lu-0-79d72a7fb34a77aba243d968a9f56bcf)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1739138648-9J0lQDXHsXhA992A1k0DlrIPnDBsTwuM-0-6feff8bbe3f4a32ec97560e363f2c52e)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1739138648-a1SQYwZFKpEgqkolMtr9DnAIKVDtkGQG-0-7b3ce12897b02c021ffd886f5463e26d)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1739138648-Q4QddVdsnXPluCqofPusvLKG3Yn3lqYP-0-856bd7e2c1d294a9d116777195615864)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1739138648-3QAGJMwLH9iedAF0WHhWWcwWFFYJSEDP-0-f1cd4ca328a9ec99c17ee65be09c8f88)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1739138648-1CrsRXj9NvLbI0dlcWh8jYyjszrBIpyQ-0-cc9035a059a3daf92b158fb0301a694d)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1739138648-I7WEaZby0eHTuWuix5SgShJb6BxxE8TR-0-6dc69d22a29d55ce60e5f6d3ccd0c326)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1739138648-PDjdUTECFelKORvcyoYKD5yo3VJ78YV8-0-8200f2ad1cd1cd6076dcfd15df3534d0)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1739138648-goQpIZki3fFPfueqiFpUe2DCTMDOlT5U-0-ce6d1d8435bd893ea8f4f67483e7697f)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1739138648-MKRjUuNzTChHp8XHVZcxNKyJSkKRa2Up-0-06f0fe00c4a2e8f95b407a8243db487d)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1739138648-H5z4n4SR3aShtjZ8qFWPrNMDtsZiLx9W-0-d834889183d6d3135b9a4c7176f41d3c)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1739138648-0hQCmm5r6DPwYIJD4pjm4ABNzzEICJ1m-0-c4863e1c7ba95f77efa2efdb50ebade5)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1739138648-ED7xgcAOhOXd7SrxIIeEZaFNBTlG0hqC-0-4f69822a5ead1f9dc0fcfde60bfe436c)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1739138648-vJHYcEowEWhj83rif1KWO2onHQYYe9Ha-0-18edd5be5a12e43fb9dbcd278a7cb5b6)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1739138648-f4G66mLRZhp2cU5zufiwRyOxBD02l9e8-0-c998890db6211b9cfe731b3c764c7f07)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1739138648-y1UGoYfVXYfnyVjfsYIv8Zd0zohkCPuU-0-531cb44a9ada6b371f0c23309e384d7f)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1739138648-egL0BXPn2hvDnU2DnZHkKsEfjNgEqCxE-0-6b6817c30582bdb7f1e3ed92791f1d49)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1739138648-eNcFlbDF1VDBPCk0sALg27gZO5rPmmtr-0-a3759821a0f3aca8289c6042220f1667)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1739138648-gtY3aNkA1YWYT3WJq8XCAKd27SKfF4ym-0-41afb5f2ceaf526cde67df0612195f1e)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1739138648-zWyIbM68gaGFBYlqPVv7D7uut2kaqS2k-0-9a7b3b4d22507eb0665ea38cbecc0872)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1739138648-e7bBUOlIT71dQTAF9QG0rWwNbw8tOr9H-0-bf1f49145473d45f984678c6f19cf8be)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1739138648-pDfcyv6PE9UctrEdtxspERR7vEYcF7BH-0-d20be70e039388861d65560d9bea29c2)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1739138648-tf1X5GZKCD9CQbnM4CgohpBwrTry7xPe-0-26f90a588f63e94448ac60afe3a6cdfb)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。