![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739138852-o3B750dN1rc49583eGiFYbNy7cSFv7pj-0-49c4ac3f0a94e39b402f3306026b85f4)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739138852-WZK8XcZNGbPPGAisWsgIHjHqTBnjKvTa-0-b01351aed3f9a4860b331169d6eab44d)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739138852-xFBZMmyZRsQhCFxYkcnOmTPJ0l3jCZuY-0-31285c2f27c1a8c12dfbd421af123b89)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739138852-I8S0xgDjuxcnTU3GeN31mfa2CMZGQxb5-0-2f6975d0e6e890b1bfd4017d802a577c)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739138852-rKKIHLZXn6RCx8SZqWDTY0XP7IP8tbvJ-0-9f637a3c3d29ab9a992372e1ff80c38d)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739138852-WXyMZbrIWhYXjBePy8A7xNp2zqwlH3MD-0-48e43ecd61b082184e2ae999ffd86dfe)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739138852-ZigmurhGJG5kQF6ACmBdLygNiSXIDN28-0-d7adc321df8fe09c1f2f08ddaa17b1c4)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739138852-oX3FhxqtT50jQcDgkUBnboxIziUGX5Gx-0-4d318a082a76700ff62e1932cc3ffe32)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739138852-yoAQgdmdARrR70R8kbhXRbS20VYvB9Wz-0-840ecf81ef14bddb35929370882fc6c8)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739138852-Te0zpWcQcQxtqWY62DfOz9ZRmWNgHLqf-0-12419b93868edeffc6d8aef42b300c94)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739138852-0PDUmjkh6kVV7CnIdfkZSeaLxRh3Aykf-0-73c76cee22dcdcfe90bbc343e2127afe)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739138852-R73xuTUXRg1SqFy28QWz3cFPH9jy3bqI-0-0a2c5380293b171a534cabe448551333)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739138852-YMutUP4uDQJRZWaP2cOVCxIjl4Oih6t7-0-4576af74fefd0c8f0b07d59077822a8c)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739138852-Oha6F6OV87e7s83lbJKI0h44Qd51HmLK-0-9db5cf677799073416e851b550977ed7)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739138852-WrKTVSd6u86PpAHXLBTX1pX04omrTrkn-0-02dbf1294127c958cc0e48d08ca4fac7)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739138852-zlRWGtFAB4fpTcimIha8FPvlwKNmX9nZ-0-e5bdd0a1e95468d5186cbe76e820f310)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739138852-8d1G6My3fIajtXSOHRHwfChlKTPdZfeD-0-d07949eecb2dcf6a43b5aab8c2d77871)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739138852-tk5RXnSkpUAWeNuKHtPDdBEEiJFBQDp0-0-b81e7220353a412a17aecb9de7ba4f3c)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739138852-RgU6Z667ar9UJbkHwVXYoJt6UJ8HrCQN-0-e10c3418c52e5b02a7418e6d4c888f74)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739138852-znUbaVYTgkPV8Rd8JgSeONAV1mTuMKkU-0-33d408a65b9ebaa5ee3a43a840a92b17)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739138852-7Xb0ydJC4JUNNDfGPZZMs4PCYuTgRtDh-0-2c7cacccf29519ae353835ed13ba5f72)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739138852-N2GSV4qBKVOXPgp0DkkebtSFaYTeivoa-0-63e33f3cd5c954c2ed4ff2efec0471f1)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739138852-NjDwMIE4Mx6riKgJ08CsPj4IAtwuh3fv-0-2b266628fa2479790c3ee35c80f22f1e)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739138852-LvjhMYS9QZTryJ5CARCbAl5Kj7RqAY0w-0-c5a15e173917bfa80b330ba0ffa6d766)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739138852-eOPkmZG8wnnX4fjPwp2RNp8eRXzjJZmb-0-fbda1c60f42387906115911c41d87ae5)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739138852-J5rTrsuDfeaKFS9jiOiFRDsyPAk5o5C3-0-3e17790ee4754e0012713a8a15d86386)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739138852-o51p3re1oOlHLpFbqhTwUG5FapdoOdvU-0-3799a38c738399678795451bb7cab1ed)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739138852-0f7sYrZR6lDr6h7ojuxypuE8ZjzXqbPw-0-7a07f258eca14189d65067e3ea3e9407)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739138852-MbEgw2PIhJN6mdqyRI6uTBHxZR366gTe-0-4fee3819dfb473bc216116de92aa62d2)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739138852-D8uQibT6mXC11w46K6GBDLbcLyKqp6Ti-0-09ff245f2de15b2a3358c9b29e7e89ec)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739138852-7xBcOvxZM6gW5V3Gnzai1Rj8TgkQw6ih-0-32e29037b0a9be0051f1f2f3f17bfa0b)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739138852-WMdUyLo4hplXDRhykxRkBFvMbxiqieCO-0-63c583833d26c5276cba8a04a707a1f9)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739138852-H8VJj6j9me8TWnF5jLRfePLZxPhNIHGn-0-9202ed173726136f70856031d32fc226)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739138852-YThiWf2YCdRh9xfPSEvZJg1F51aV244z-0-be6ebef18b31cf8336cad45fba4ee3d2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739138852-ViNHt25VLdARo6EeAXkkGc5KLWRhfGLC-0-98442638b3ef1a4e12751141d2408276)
上式式表明相空间一个体积元h3相当于有一个量子态.