上QQ阅读APP看书,第一时间看更新
2.6 使用Numpy实现机器学习
前面已经介绍了Numpy、Tensor的基础内容,对如何使用Numpy、Tensor操作数组有了一定认识。为了加深大家对使用PyTorch完成机器学习、深度学习的理解,本章剩余章节将分别用Numpy、Tensor、autograd、nn及optimal来实现同一个机器学习任务,比较它们之间的异同及各自优缺点,从而使读者加深对PyTorch的理解。
首先,我们用最原始的Numpy实现有关回归的一个机器学习任务,不用PyTorch中的包或类。这种方法代码可能多一点,但每一步都是透明的,有利于理解每步的工作原理。主要步骤包括:
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。
然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。
最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。
以下为具体步骤:
1)导入需要的库。
# -*- coding: utf-8 -*- import numpy as np %matplotlib inline from matplotlib import pyplot as plt
2)生成输入数据x及目标数据y。
设置随机数种子,生成同一个份数据,以便用多种方法进行比较。
np.random.seed(100) x = np.linspace(-1, 1, 100).reshape(100,1) y = 3*np.power(x, 2) +2+ 0.2*np.random.rand(x.size).reshape(100,1)
3)查看x、y数据分布情况。
# 画图 plt.scatter(x, y) plt.show()
运行结果如图2-11所示。
图2-11 Numpy实现的源数据
4)初始化权重参数。
# 随机初始化参数 w1 = np.random.rand(1,1) b1 = np.random.rand(1,1)
5)训练模型。
定义损失函数,假设批量大小为100:
对损失函数求导:
利用梯度下降法学习参数,学习率为lr。
用代码实现上面这些表达式:
lr =0.001 # 学习率 for i in range(800): # 前向传播 y_pred = np.power(x,2)*w1 + b1 # 定义损失函数 loss = 0.5 * (y_pred - y) ** 2 loss = loss.sum() #计算梯度 grad_w=np.sum((y_pred - y)*np.power(x,2)) grad_b=np.sum((y_pred - y)) #使用梯度下降法,是loss最小 w1 -= lr * grad_w b1 -= lr * grad_b
6)可视化结果。
plt.plot(x, y_pred,'r-',label='predict') plt.scatter(x, y,color='blue',marker='o',label='true') # true data plt.xlim(-1,1) plt.ylim(2,6) plt.legend() plt.show() print(w1,b1)
运行结果如下,其可视化结果如图2-12所示。
图2-12 可视化Numpy学习结果
[[2.95859544]] [[2.10178594]]
从结果看来,学习效果还是比较理想的。