
会员
数据库开发实践案例
更新时间:2018-12-30 19:32:26
最新章节:参考文献开会员,本书免费读 >
本书采用案例的方式,按照数据库应用系统开发的流程,从应用背景、需求分析、系统设计、系统实现等步骤由浅入深、循序渐进地介绍每个案例的开发实现过程。全书分为8章,第1章介绍数据库系统的基础知识和数据库设计过程。第2章到第8章分别介绍以JSP、ASP.NET、C++和Java等作为前台手段,MicrosoftSQLServer作为后台数据库的系统开发案例。每个案例都提供了经过测试的完整源代码及说明,便于读者学习和参考。
上架时间:2013-01-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
数据库开发实践案例最新章节
查看全部同类热门书
最新上架
- 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
MySQL数据库实用教程
本书瞄准当前高校MySQL数据库教学与实验的需求,在MySQL8.0的基础上编写而成。全书分为两篇。第一篇为MySQL数据库基础,内容包含:数据库基础、MySQL语言、数据定义、数据操纵、数据查询、视图和索引、MySQL编程技术、MySQL安全管理、备份和恢复、事务管理、PHP和MySQL教学管理系统开发。第二篇为MySQL实验,所编排的各个实验与第一篇中的各章(除第10、11章外)内容相对应,计算机12万字 - 会员
大数据导论
本书围绕新工科背景下大数据人才培养需求编写,既涵盖了大数据的基础知识,又介绍了大数据分析的相关工具与案例。全书共9章,介绍了大数据采集与预处理、大数据存储与管理、大数据处理与分析、大数据可视化处理流程;重点分析了科大讯飞大数据平台在政务、交通、金融和用户画像等实际场景中的应用,还介绍了大数据实验环境的详细搭建步骤,方便读者快速理解和体验大数据应用技术;最后介绍了大数据治理中法律政策、行业标准建设的计算机14.5万字 - 会员
Python数据分析
本书系统介绍了使用Python进行数据分析需要掌握的各项知识,涵盖了Python基础知识、网络爬虫技术、正则表达式、BeautifulSoup和JSON、词语切分、自然语言处理、使用NumPy与Pandas处理数据、数据可视化技术、MySQL、机器学习、朴素贝叶斯模型、支持向量机、随机森林、深度学习以及量化投资。本书通过结合数据分析技术的理论知识与Python的实战应用,帮助读者更好地运用Pyth计算机12.3万字 - 会员
新媒体数据分析基础教程
本书共8章,第1章介绍新媒体数据分析的基础知识;第2章介绍各种新媒体数据分析指标;第3章介绍新媒体数据的采集;第4章介绍新媒体数据处理;第5章介绍新媒体数据分析的思维和方法;第6章介绍新媒体数据可视化;第7章介绍不同新媒体平台的数据分析方法和实战技能;第8章介绍新媒体数据分析报告的制作。计算机9.2万字 - 会员
商业分析思维与实践:用数据分析解决商业问题
本书本书基于业务问题,就如何搭建分析框架,厘清分析思路,按照标准分析步骤对数据进行怡当的预处理,选择合适的分析方法和分析模型,使用恰当的分析工具对数据进行分析,以及对分析结果进行可视化和符合业务要求的解读等内容展开讲解,帮助业务专家做出合适的业务判断,制定准确的业务策略。计算机13万字 - 会员
大数据SQL优化:原理与实践
这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。计算机14万字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
PySpark大数据分析与应用
本书以Python作为开发语言,系统介绍PySpark开发环境搭建流程及基于PySpark进行大数据分析的相关知识。本书条理清晰、重点突出,理论叙述循序渐进、由浅入深。本书共7章,第1?5章包括PySpark大数据分析概述、PySpark安装配置、基于PySpark的DataFrame操作、基于PySpark的流式数据处理、基于PySpark的机器学习库,内容介绍注重理论与实践相结合,通过典型示例计算机10.4万字